时间:2025-05-23 01:15
地点:柳城县
ebpay 链接: www.ebpay.org、www.ebpay.app
材料: - 面粉 250克 - 温水 150毫升 - 盐 1/4茶匙 - 鸡蛋 1个 - 菜心 适量 - 葱花 适量 - 食用油 适量 步骤: 1. 将面粉倒入一个大碗中,加入盐,慢慢加入温水搅拌均匀,直到形成一个柔软的面团。 2. 将面团放在一个台面上,揉搓5分钟,直到面团光滑且有弹性。然后将面团覆盖,静置15分钟。 3. 将菜心洗净切碎,鸡蛋打散备用。 4. 将面团擀成一个大薄片,然后刷上一层薄薄的鸡蛋液。 5. 在面团上铺上切碎的菜心和葱花,均匀分布。 6. 从一侧开始慢慢卷起面团,形成一个卷饼状。 7. 将卷饼切成适当大小的小块。 8. 取一个平底锅,加入适量的食用油,烧热。 9. 将切好的面团块放入锅中,用铲子稍微压扁,煎至两面金黄,表面有一些泡泡即可。 这样做出来的空心饼柔软好吃,里面有蔬菜和鸡蛋的味道,即使凉了也不会变硬。可以作为早餐或下午茶的小吃,搭配花茶或牛奶一起享用,美味又营养。
四、通信能力情况 千兆光纤宽带网络建设持续推进。
我们是受党教育培养多年的老党员,虽然退休了,但要退岗不退党,退休不褪色,更要带头学习好长征精神,传承好长征精神,让长征精神代代相传。
哪些景点适合亲子游?
来源:华商网-华商报 编辑:曹静
通知提到,引导民间投资参与清洁能源及绿色低碳领域建设。
”市禁捕办有关负责人介绍,在“三年强基础”的过程中,全市各级各职能部门密切合作、多措并举,全力遏制、依法打击非法捕捞行为,捷报频传。
(1-1/2)+(1/2-1/3)+(1/3-1/4)+···+(1/2009-1/2010
To find the sum of the given series, we need to add all the terms together. (1 - 1/2) + (1/2 - 1/3) + (1/3 - 1/4) + ... + (1/2009 - 1/2010) We can simplify each term by finding the common denominator. 1 - 1/2 = 2/2 - 1/2 = 1/2 1/2 - 1/3 = 3/6 - 2/6 = 1/6 1/3 - 1/4 = 4/12 - 3/12 = 1/12 We can observe that each term follows this pattern - the denominator of the second fraction becomes the denominator of the first fraction in the next term. So, the series can be written as: 1/2 + 1/6 + 1/12 + ... + 1/2009 To find the sum of this series, we need to find the common denominator of all the fractions. The common denominator of 2, 6, 12, ..., 2009 will be the least common multiple (LCM) of these numbers. Calculating the LCM of these numbers is a bit lengthy. Instead, we can find the LCM of 2, 3, 4, ..., 2010, and then divide by the LCM of 2, 3, 4, ..., 2009. LCM(2, 3, 4, ..., 2010) / LCM(2, 3, 4, ..., 2009) = 2010 / 2 = 1005 So, the common denominator is 1005. To add the fractions, we need to express them with the common denominator: 1/2 = (1/2) * (1005/1005) = 1005/2010 1/6 = (1/6) * (1005/1005) = 167.5/2010 1/12 = (1/12) * (1005/1005) = 83.75/2010 Now we can add: 1005/2010 + 167.5/2010 + 83.75/2010 + ... + 1/2009 We can observe that the denominators of the fractions form an arithmetic sequence, and the numerators follow the same pattern. Using the formula for the sum of an arithmetic sequence: Sum = (first term + last term) * number of terms / 2 In this case, the first term is 1005/2010, the last term is 1/2009, and the number of terms is 2010. Sum = (1005/2010 + 1/2009) * 2010/2 Sum = (1005/2010 + 1/2009) * 1005 Sum = (1005 * 2009 + 1 * 2010) / 2 Sum = (2019955 + 2010) / 2 Sum = 2021965 / 2 Sum = 1010982.5 Therefore, the sum of the given series is 1010982.5.